## Mathematics

## SECTION 1 (Maximum Marks: 12)

- This section contains THREE (03) questions.
- Each question has FOUR options (A), (B), (C) and (D). ONE OR MORE THAN ONE of these four option(s) is(are) correct answer(s).
- For each question, choose the option(s) corresponding to (all) the correct answer(s).
- Answer to each question will be evaluated according to the following marking scheme:

Full Marks : +4 ONLY if (all) the correct option(s) is(are) chosen;
Partial Marks : +3 If all the four options are correct but ONLY three options are chosen;
Partial Marks : +2 If three or more options are correct but ONLY two options are chosen, both of which are correct;
Partial Marks : +1 If two or more options are correct but ONLY one option is chosen and it is a correct option;
Zero Marks : 0 If none of the options is chosen (i.e. the question is unanswered);
Negative Marks: -2 In all other cases.

- For example, in a question, if (A), (B) and (D) are the ONLY three options corresponding to correct answers, then
choosing ONLY (A), (B) and (D) will get +4 marks;
choosing ONLY (A) and (B) will get +2 marks;
choosing ONLY (A) and (D) will get +2 marks;
choosing ONLY (B) and (D) will get +2 marks;
choosing ONLY (A) will get +1 mark;
choosing ONLY (B) will get +1 mark;
choosing ONLY (D) will get +1 mark;
choosing no option (i.e. the question is unanswered) will get 0 marks; and choosing any other combination ofoptions will get -2 marks.
Q. $1 \quad$ Let $S=(0,1)(1,2) \cup(3,4)$ and $T=\{0,1,2,3\}$. Then which of the following statements is(are) true?
(A) There are infinitely many functions from $S$ to $T$
(B) There are infinitely many strictly increasing functions from $S$ to $T$
(C) The number of continuous functions from $S$ to $T$ is at most 120
(D) Every continuous function from $S$ to $T$ is differentiable
Q. 2

Let $T_{1}$ and $T_{2}$ be two distinct common tangents to the ellipse $E: \frac{x^{2}}{6}+\frac{y^{2}}{3}=1$ and the parabola $P: y^{2}=12 x$. Suppose that the tangent $T_{1}$ touches $P$ and $E$ at the points $A_{1}$ and $A_{2}$, respectively and the tangent $T_{2}$ touches $P$ and $E$ at the points $A_{4}$ and $A_{3}$, respectively. Then which of the following statements is(are) true?
(A) The area of the quadrilateral $A_{1} A_{2} A_{3} A_{4}$ is 35 square units
(B) The area of the quadrilateral $A_{1} A_{2} A_{3} A_{4}$ is 36 square units
(C) The tangents $T_{1}$ and $T_{2}$ meet the $x$-axis at the point $(-3,0)$
(D) The tangents $T_{1}$ and $T_{2}$ meet the $x$-axis at the point $(-6,0)$
Q. 3

Let $f:[0,1] \rightarrow[0,1]$ be the function defined by $f(x)=\frac{x^{3}}{3}-x^{2}+\frac{5}{9} x+\frac{17}{36}$. Consider the square region $S=[0,1] \times[0,1]$. Let $G=\{(x, y) \in S: y>f(x)\}$ be called the green region and $R=\{(x, y) \in S: y<f(x)\}$ be called the red region. Let $L_{h}=\{(x, h) \in S: x \in[0,1]\}$ be the horizontal line drawn at a height $h \in[0,1]$. Then which of the following statements is(are) true?
(A) There exists an $h \in\left[\frac{1}{4}, \frac{2}{3}\right]$ such that the area of the green region above the line $L_{h}$ equals the area of the green region below the line $L_{h}$
(B) There exists an $h \in\left[\frac{1}{4}, \frac{2}{4}\right]$ such that the area of the red region above the $L_{h}$ equals the area of the red region beoniw the line $L_{h}$
(C) There exists an ${ }^{4} \in\left[\frac{1}{4}, \frac{2}{3}\right]$ such that the area of the green region above the line $L_{h}$ equals the area of the redregion below the line $L_{h}$
(D) There exists an $h \in\left[\frac{1}{4}, \frac{2}{3}\right]$ such that the area of the red region above the line $L_{h}$ equals the area of the green region below the line $L_{h}$

## SECTION 2 (Maximum Marks: 12)

- This section contains FOUR (04) questions.
- Each question has FOUR options (A), (B), (C) and (D). ONLY ONE of these four options is the correct answer.
- For each question, choose the option corresponding to the correct answer.
- Answer to each question will be evaluated according to the following marking scheme:

Full Marks $:+3$ If ONLY the correct option is chosen;
Zero Marks : 0 If none of the options is chosen (i.e. the question is unanswered); Negative Marks : -1 In all other cases.
Q. 4 Let $f:(0,1) \rightarrow \mathbb{R}$ be the function defined as $f(x)=\sqrt{n}$ if $x \in\left[\frac{1}{n+1}, \frac{1}{n}\right)$ where $n \in \mathbb{N}$. Let $g:(0,1) \rightarrow \mathbb{R}$ be a function such that $\int_{x^{2}}^{x} \sqrt{\frac{1-t}{t}} d t<g(x)<2 \sqrt{x}$ for all $x \in(0,1)$. Then $\lim _{x \rightarrow 0} f(x) g(x)$
(A) does NOT exist
(B) is equal to 1
(C) is equal to 2
(D) is equal to 3
Q. 5 Let $Q$ be the cube with ino set of vertices $\left\{\left(x_{1}, x_{2}, x_{3}\right) \in \mathbb{R}^{3}: x_{1}, x_{2}, x_{3} \in\{0,1\}\right\}$. Let $F$ be the set of all twelve lines cof taining the diagonals of the six faces of the cube $Q$. Let $S$ be the set of all four lines contang the main diagonals of the cube $Q$; for instance, the line passing through the vertices $(0,0)$ and $(1,1,1)$ is in $S$. For lines $\ell_{1}$ and $\ell_{2}$, let $d\left(\ell_{1}, \ell_{2}\right)$ denote the shortest distance between them. Then the maximum value of $d\left(\ell_{1}, \ell_{2}\right)$, as $\ell_{1}$ varies over $F$ and $\ell_{2}$ varies over $S$, is
(A) $\frac{1}{\sqrt{6}}$
(B) $\frac{1}{\sqrt{8}}$
(C) $\frac{1}{\sqrt{3}}$
(D) $\frac{1}{\sqrt{12}}$
Q. $6 \quad$ Let $X=\left\{(x, y) \in \mathbb{Z} \times \mathbb{Z}: \frac{x^{2}}{8}+\frac{y^{2}}{20}<1\right.$ and $\left.y^{2}<5 x\right\}$. Three distinct points $P, Q$ and $R$ are randomly chosen from $X$. Then the probability that $P, Q$ and $R$ form a triangle whose area is a positive integer, is
(A) $\frac{71}{220}$
(B) $\frac{73}{220}$
(C) $\frac{79}{220}$
(D) $\frac{83}{220}$
Q. $7 \quad$ Let $P$ be a point on the parabola $y^{2}=4 a x$, where $a>0$. The normal to the parabola at $P$ meets the $x$-axis at a point $Q$. The area of the triangle $P F Q$, where $F$ is the focus of the parabola, is 120 . If the slope $m$ of the normal and $a$ are both positive integers, then the pair $(a, m)$ is
(A) $(2,3)$
(B) $(1,3)$
(C) $(2,4)$
(D) $(3,4)$

## SECTION 3 (Maximum Marks: 24)

- This section contains SIX (06) questions.
- The answer to each question is a NON-NEGATIVE INTEGER.
- For each question, enter the correct integer corresponding to the answer using the mouse and the onscreen virtual numeric keypad in the place designated to enter the answer.
- Answer to each question will be evaluated according to the following marking scheme:

Full Marks : +4 If ONLY the correct integer is entered; Zero Marks : 0 In all other cases.
Q. 8

Let $\tan ^{-1}(x) \in\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$, for $x \in \mathbb{R}$. Then the number of real solutions of the equation $\sqrt{1+\cos (2 x)}=\sqrt{2} \tan ^{-1}(\tan x)$ in the $\operatorname{set}\left(-\frac{3 \pi}{2},-\frac{\pi}{2}\right) \cup\left(-\frac{\pi}{2}, \frac{\pi}{2}\right) \cup\left(\frac{\pi}{2}, \frac{3 \pi}{2}\right)$ is equal to
Q. 9 Let $n \geq 2$ be a natural number and $f:[0,1] \rightarrow \mathbb{R}$ be the function defined by


If $n$ is such that the area of the region bounded by the curves $x=0, x=1, y=0$ and $y=f(x)$ is 4 , then the maximum value of the function $f$ is
Q. 10
$7 \overbrace{575}^{r}$ the remaining $r$ digits are 5 . Consider the sum $S=77+757+7557+\cdots+7 \overbrace{5 \cdots 57}^{98}$. If $S=\frac{7 \overbrace{5 \cdots 5}^{99} 7+m}{n}$, where $m$ and $n$ are natural numbers less than 3000 , then the value of $m+n$ is
Q. 11 Let $A=\left\{\frac{1967+1686 i \sin \theta}{7-3 i \cos \theta}: \theta \in \mathbb{R}\right\}$. If $A$ contains exactly one positive integer $n$, then the value of $n$ is
Q. 12 Let $P$ be the plane $\sqrt{3} x+2 y+3 z=16$ and let
$S=\left\{\alpha \hat{i}+\beta \hat{j}+\gamma \hat{k}: \alpha^{2}+\beta^{2}+\gamma^{2}=1\right.$ and the distance of $(\alpha, \beta, \gamma)$ from the plane $P$ is $\left.\frac{7}{2}\right\}$. Let $\vec{u}, \vec{v}$ and $\vec{w}$ be three distinct vectors in $S$ such that $|\vec{u}-\vec{v}|=|\vec{v}-\vec{w}|=|\vec{w}-\vec{u}|$. Let $V$ be the volume of the parallelepiped determined by vectors $\vec{u}, \vec{v}$ and $\vec{w}$. Then the value of $\frac{80}{\sqrt{3}} V$ is
Q. 13 Let $a$ and $b$ be two nonzero real numbers. If the coefficient of $x^{5}$ in the expansion of $\left(a x^{2}+\frac{70}{27 b x}\right)^{4}$ is equal to the coefficient of $x^{-5}$ in the expansion of $\left(a x-\frac{1}{b x^{2}}\right)^{7}$, then the value of $2 b$ is

## SECTION 4 (Maximum Marks: 12)

- This section contains FOUR (04) Matching List Sets.
- Each set has ONE Multiple Choice Question.
- Each set has TWO lists: List-I and List-II.
- List-I has Four entries (P), (Q), (R) and (S) and List-II has Five entries (1), (2), (3), (4) and (5).
- FOUR options are given in each Multiple Choice Question based on List-I and List-II and ONLY ONE of these four options satisfies the condition asked in the Multiple Choice Question.
- Answer to each question will be evaluated according to the following marking scheme:

Full Marks : +3 ONLY if the option corresponding to the correct combination is chosen;
Zero Marks : 0 If none of the options is chosen (i.e. the question is unanswered);
Negative Marks : -1 In all other cases.
Q. 14 Let $\alpha, \beta$ and $\gamma$ be real numbers. Consider the following system of linear equations
$x+2 y+z=7$
$x+\alpha z=11$
$2 x-3 y+\beta z=\gamma$

Match each entry in List-I to the correct entries in List-II.

## List-I

(P) If $\beta=\frac{1}{2}(7 \alpha-3), \gamma=28$, then the system has
(Q) If $\beta=\frac{1}{2}(\alpha-3)$ and $\gamma \neq 28$, then the system has
(R) If $\beta \neq \frac{1}{2}(7 \alpha-3)$ where $\alpha=1$ and
(3) infinitely many solutions
$\gamma \neq 28$, then the system has
(S) If $\beta \neq \frac{1}{2}(7 \alpha-3)$ where $\alpha=1$ and $\gamma=28$, then the system has
(4) $x=11, y=-2$ and $z=0$ as a solution
(5) $x=-15, y=4$ and $z=0$ as a solution

The correct option is:
$(\mathrm{A})(P) \rightarrow(3) \quad(Q) \rightarrow(2) \quad(R) \rightarrow(1) \quad(S) \rightarrow(4)$
(B) $(P) \rightarrow(3) \quad(Q) \rightarrow(2) \quad(R) \rightarrow(5) \quad(S) \rightarrow(4)$
$(\mathrm{C})(P) \rightarrow(2)$
$(Q) \rightarrow(1)$
$(R) \rightarrow(4)$
$(S) \rightarrow(5)$
$(\mathrm{D})(P) \rightarrow(2) \quad(Q) \rightarrow(1) \quad(R) \rightarrow(1) \quad(S) \rightarrow(3)$
Q. 15 Consider the given data with frequency distribution

| $x_{i}$ | 3 | 8 | 11 | 10 | 5 | 4 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $f_{i}$ | 5 | 2 | 3 | 2 | 4 | 4 |

Match each entry in List-I to the correct entries in List-II.

## List-I

(P) The mean of the above data is
(Q) The median of the above data is
$(\mathrm{R})$ The mean deviation about the mean of the above data is
(S) The mean deviation about the median of the above data is

## List-II

(1) 2.5
(2) 5
(3) 6
(4) 2.7
(5) 2.4

The correct option is:
(A) $(P) \rightarrow(3)$
$(Q) \rightarrow(2)$
$(R) \rightarrow(4)$
(S) $\rightarrow$ (5)
(B) $(P) \rightarrow(3)$
$(Q) \rightarrow(2)$
$(R) \rightarrow(1)$
$(S) \rightarrow(5)$
(C) $(P) \rightarrow(2)$
$(Q) \rightarrow(3)$
$(R) \rightarrow(4)$
$(S) \rightarrow(1)$
(D) $(P) \rightarrow(3)$
$(Q) \rightarrow(3) \quad(R) \rightarrow(5)$
$(S) \rightarrow$ (5)
Q. 16 Let $\ell_{1}$ and $\ell_{2}$ be the lines $\vec{r}_{1}=\lambda(\hat{i}+\hat{j}+\hat{k})$ and $\vec{r}_{2}=(\hat{j}-\hat{k})+\mu(\hat{i}+\hat{k})$, respectively. Let $X$ be the set of all the planes $H$ that contain the line $\ell_{1}$. For a plane $H$, let $d(H)$ denote the smallest possible distance between the points of $\ell_{2}$ and $H$. Let $H_{0}$ be a plane in $X$ for which $d\left(H_{0}\right)$ is the maximum value of $d(H)$ as $H$ varies over all planes in $X$.

Match each entry in List-I to the correct entries in List-II.

## List-I

(P) The value of $d\left(H_{0}\right)$ is
(Q) The distance of the point $(0,1,2)$ from $H_{0}$ is
(R) The distance of origin from $H_{0}$ is
(S) The distance of origin from the point of intersection of planes $y=z, x=1$ and $H_{0}$ is

## List-II

(1) $\sqrt{3}$
(2) $\frac{1}{\sqrt{3}}$
(3) 0
(4) $\sqrt{2}$
(5) $\frac{1}{\sqrt{2}}$

The correct option is:
$(\mathrm{A})(P) \rightarrow(2) \quad(Q) \rightarrow(4) \quad(R) \rightarrow(5) \quad(S) \rightarrow(1)$
$(\mathrm{B})(P) \rightarrow(5) \quad(Q) \rightarrow(4) \quad(R) \rightarrow(3) \quad(S) \rightarrow(1)$
$(\mathrm{C})(P) \rightarrow(2) \quad(Q) \rightarrow(1) \quad(R) \rightarrow(3) \quad(S) \rightarrow(2)$
$(\mathrm{D})(P) \rightarrow(5) \quad(Q) \rightarrow(R) \rightarrow(4) \quad(S) \rightarrow(2)$
Q. 17 Let $z$ be a contex number satisfying $|z|^{3}+2 z^{2}+4 \bar{z}-8=0$, where $\bar{z}$ denotes the complex conjugate o 02 . Let the imaginary part of $z$ be nonzero.

Match each entry in List-I to the correct entries in List-II.

## List-I

(P) $|Z|^{2}$ is equal to
(Q) $|z-\bar{Z}|^{2}$ is equal to
(R) $|z|^{2}+|z+\bar{Z}|^{2}$ is equal to
(S) $|z+1|^{2}$ is equal to

## List-II

(1) 12
(2) 4
(3) 8
(4) 10
(5) 7

The correct option is:
$(\mathrm{A})(P) \rightarrow(1)$
$(Q) \rightarrow(3)$
$(R) \rightarrow(5) \quad(S) \rightarrow(4)$
$(\mathrm{B})(P) \rightarrow(2)$
$(Q) \rightarrow(1)$
$(R) \rightarrow(3)$
$(S) \rightarrow(5)$
(C) $(P) \rightarrow(2)$
$(Q) \rightarrow(4) \quad(R) \rightarrow(5)$
$(S) \rightarrow(1)$
(D) $(P) \rightarrow(2)$
$(Q) \rightarrow(3) \quad(R) \rightarrow(5)$
$(S) \rightarrow(4)$

## END OF THE QUESTION PAPER



## Physics

## SECTION 1 (Maximum Marks: 12)

- This section contains THREE (03) questions.
- Each question has FOUR options (A), (B), (C) and (D). ONE OR MORE THAN ONE of these four option(s) is(are) correct answer(s).
- For each question, choose the option(s) corresponding to (all) the correct answer(s).
- Answer to each question will be evaluated according to the following marking scheme:

Full Marks : +4 ONLY if (all) the correct option(s) is(are) chosen;
Partial Marks : +3 If all the four options are correct but ONLY three options are chosen;
Partial Marks : +2 If three or more options are correct but ONLY two options are chosen, both of which are correct;
Partial Marks : +1 If two or more options are correct but ONLY one option is chosen and it is a correct option;
Zero Marks : 0 If none of the options is chosen (i.e. the question is unanswered);
Negative Marks: -2 In all other cases.

- For example, in a question, if (A), (B) and (D) are the ONLY three options corresponding to correct answers, then
choosing ONLY (A), (B) and (D) will get +4 marks;
choosing ONLY $(A)$ and $(B)$ will get +2 marks;
choosing ONLY (A) and (D) will get +2 marks;
choosing ONLY (B) and (D) will get +2 marks;
choosing ONLY (A) will get +1 mark;
choosing ONLY (B) will get +1 mark;
choosing ONLY (D) will get +1 mark;
choosing no option (i.e. the question ig unanswered) will get 0 marks; and
choosing any other combination of entions will get -2 marks.
Q. 1 A slide with a frictionless curved surface, which becomes horizontal at its lower end, is fixed on the terrace of a building of height $3 h$ from the ground, as shown in the figure. A spherical ball of mass $m$ is released on the slide from rest at a height $h$ from the top of the terrace. The ball leaves the slide with a velocity $\vec{u}_{0}=u_{0} \hat{x}$ and falls on the ground at a distance $d$ from the building making an angle $\theta$ with the horizontal. It bounces off with a velocity $\overrightarrow{\mathrm{v}}$ and reaches a maximum height $h_{1}$. The acceleration due to gravity is $g$ and the coefficient of restitution of the ground is $1 / \sqrt{3}$. Which of the following statement(s) is(are) correct?

(A) $\overrightarrow{\mathrm{u}}_{0}=\sqrt{2 g h} \hat{x}$
(B) $\vec{v}=\sqrt{2 g h}(\hat{x}-\hat{z})$
(C) $\theta=60^{\circ}$
(D) $d / h_{1}=2 \sqrt{3}$


## D ownload all N O T E S and PAPE R S at StudentSuvidha.com

Q. 2 A plane polarized blue light ray is incident on a prism such that there is no reflection from the surface of the prism. The angle of deviation of the emergent ray is $\delta=60^{\circ}$ (see Figure-1). The angle of minimum deviation for red light from the same prism is $\delta_{\min }=30^{\circ}$ (see Figure-2). The refractive index of the prism material for blue light is $\sqrt{3}$. Which of the following statement(s) is(are) correct?


Figure-1


Figure-2
(A) The blue light is polarized in the plane of incidence.
(B) The angle of the prism is $45^{\circ}$.
(C) The refractive index of the material of the prism for red light is $\sqrt{2}$.
(D) The angle of refraction for blue light in air at the exit plane of the prism is $60^{\circ}$.
Q. 3 In a circuit shown in the figure, tha capacitor $C$ is initially uncharged and the key $K$ is open. In this condition, a current of 1 A flown hrough the $1 \Omega$ resistor. The key is closed at time $t=t_{0}$. Which of the following statement(s) is (are) correct?
[Given: $\left.e^{-1}=0.36\right]$

(A) The value of the resistance $R$ is $3 \Omega$.
(B) For $t<t_{0}$, the value of current $I_{1}$ is 2 A .
(C) At $t=t_{0}+7.2 \mu \mathrm{~s}$, the current in the capacitor is 0.6 A .
(D) For $t \rightarrow \infty$, the charge on the capacitor is $12 \mu \mathrm{C}$.

## SECTION 2 (Maximum Marks: 12)

- This section contains FOUR (04) questions.
- Each question has FOUR options (A), (B), (C) and (D). ONLY ONE of these four options is the correct answer.
- For each question, choose the option corresponding to the correct answer.
- Answer to each question will be evaluated according to the following marking scheme:

Full Marks $:+3$ If ONLY the correct option is chosen;
Zero Marks : 0 If none of the options is chosen (i.e. the question is unanswered);
Negative Marks : -1 In all other cases.
Q. 4 A bar of mass $M=1.00 \mathrm{~kg}$ and length $L=0.20 \mathrm{~m}$ is lying on a horizontal frictionless surface. One end of the bar is pivoted at a point about which it is free to rotate. A small mass $m=0.10 \mathrm{~kg}$ is moving on the same horizontal surface with $5.00 \mathrm{~m} \mathrm{~s}^{-1}$ speed on a path perpendicular to the bar. It hits the bar at a distance $L / 2$ from the pivoted end and returns back on the same path with speed $v$. After this elastic collision, the bar rotates with an angular velocity $\omega$. Which of the following statement is correct?
(A) $\omega=6.98 \mathrm{rad} \mathrm{s}^{-1}$ and $\mathrm{v}=4.30 \mathrm{~m} \mathrm{~s}^{-1}$
(B) $\omega=3.75 \mathrm{rad} \mathrm{s}^{-1}$ and $\mathrm{v}=4.30 \mathrm{~m} \mathrm{~s}^{-1}$
(C) $\omega=3.75 \mathrm{rad} \mathrm{s}^{-1}$ and $\mathrm{v}=10.0 \mathrm{~m} \mathrm{~s}^{-1}$
(D) $\omega=6.80 \mathrm{rad} \mathrm{s}^{-1}$ and $\mathrm{v}=4.10 \mathrm{~m} \mathrm{~s}^{-1}$
Q. 5 A container has a base of $50 \mathrm{~cm} \times 5 \mathrm{~cm}$ and height 50 cm , as shown in the figure. It has two parallel electrically conducting ( alls each of area $50 \mathrm{~cm} \times 50 \mathrm{~cm}$. The remaining walls of the container are thin and non orducting. The container is being filled with a liquid of dielectric constant 3 at a uniform rat of $250 \mathrm{~cm}^{3} \mathrm{~s}^{-1}$. What is the value of the capacitance of the container after 10 seconds?
[Given: Permitti ${ }^{\mathrm{t}} \mathrm{y}^{\prime}$ of free space $\epsilon_{0}=9 \times 10^{-12} \mathrm{C}^{2} \mathrm{~N}^{-1} \mathrm{~m}^{-2}$, the effects of the non-conducting walls on the capacitance are negligible]

(A) 27 pF
(B) 63 pF
(C) 81 pF
(D) 135 pF

## D ownload all N O T E S and PAPE R S at StudentSuvidha.com

Q. 6 One mole of an ideal gas expands adiabatically from an initial state ( $T_{A}, V_{0}$ ) to final state ( $T_{\mathrm{f}}, 5 V_{0}$ ). Another mole of the same gas expands isothermally from a different initial state ( $T_{\mathrm{B}}, V_{0}$ ) to the same final state ( $T_{\mathrm{f}}, 5 V_{0}$ ). The ratio of the specific heats at constant pressure and constant volume of this ideal gas is $\gamma$. What is the ratio $T_{\mathrm{A}} / T_{\mathrm{B}}$ ?
(A) $5^{\gamma-1}$
(B) $5^{1-\gamma}$
(C) $5^{\gamma}$
(D) $5^{1+\gamma}$
Q. 7 Two satellites P and Q are moving in different circular orbits around the Earth (radius $R$ ). The heights of P and Q from the Earth surface are $h_{\mathrm{P}}$ and $h_{\mathrm{Q}}$, respectively, where $h_{\mathrm{P}}=R / 3$. The accelerations of P and Q due to Earth's gravity are $g_{\mathrm{P}}$ and $g_{\mathrm{Q}}$, respectively. If $g_{\mathrm{P}} / g_{\mathrm{Q}}=36 / 25$, what is the value of $h_{\mathrm{Q}}$ ?
(A) $3 R / 5$
(B) $R / 6$
(C) $6 R / 5$
(D) $5 R / 6$

## SECTION 3 (Maximum Marks: 24)

- This section contains SIX (06) questions.
- The answer to each question is a NON-NEGATIVE INTEGER.
- For each question, enter the correct integer corresponding to the answer using the mouse and the onscreen virtual numeric keypad in the place designated to enter the answer.
- Answer to each question will be evaluated according to the following marking scheme:

Full Marks : +4 If ONLY the correct integer is entered; Zero Marks : 0 In all other cases.
Q. 8 A Hydrogen-like atom has atomic number $Z$. Photons emitted in the electronic transitions from level $n=4$ to level $n=3$ in these atoms are used to perform photoelectric effect experiment on a target metal. The maximum kinetic energy of the photoelectrons generated is 1.95 eV . If the photoelectric threshold wavelength for the target metal is 310 nm , the value of $Z$ is $\qquad$ .
[Given: $h c=1240 \mathrm{eV}-\mathrm{nm}$ and $R h c=13.6 \mathrm{eV}$, where $R$ is the Rydberg constant, $h$ is the Planck's constant and $c$ is the speed of light in vacuum]
Q. 9 An optical arrangement consists of two concave mirrors $\mathrm{M}_{1}$ and $\mathrm{M}_{2}$, and a convex lens L with a common principal axis, as shown in the figure. The focal length of L is 10 cm . The radii of curvature of $\mathrm{M}_{1}$ and $\mathrm{M}_{2}$ are 20 cm and 24 cm , respectively. The distance between L and $\mathrm{M}_{2}$ is 20 cm . A point object $S$ is placed at the mid-point between $L$ and $M_{2}$ on the axis. When the distance between L and $\mathrm{M}_{1}$ is $n / 7 \mathrm{~cm}$, one of the images coincides with S . The value of $n$ is $\qquad$ .

Q. 10 In an experiment for determination of the focal length of a thin convex lens, the distance of the object from the lens is $10 \pm 0.1 \mathrm{~cm}$ and the distance of its real image from the lens is $20 \pm 0.2 \mathrm{~cm}$. The error in the determination of focal length of the lens is $n \%$. The value of $n$ is $\qquad$ _.
Q. 11 A closed container contains a homogeneous mixture of two moles of an ideal monatomic gas $(\gamma=5 / 3)$ and one mole of an ideal diatomic gas $(\gamma=7 / 5)$. Here, $\gamma$ is the ratio of the specific heats at constant pressure and constant volume of an ideal gas. The gas mixture does a work of 66 Joule when heated at constant pressure. The change in its internal energy is $\qquad$ Joule.
Q. 12 A person of height 1.6 m is walking away from a lamp post of height 4 m along a straight path on the flat ground. The lamp post and the person are always perpendicular to the ground. If the speed of the person is $60 \mathrm{~cm} \mathrm{~s}^{-1}$, the speed of the tip of the person's shadow on the ground with respect to the person is $\qquad$ $\mathrm{cm} \mathrm{s}^{-1}$.
Q. 13 Two point-like objects of masses 20 gm and 30 gm are fixed at the two ends of a rigid massless rod of length 10 cm . This system is suspended vertically from a rigid ceiling using a thin wire attached to its center of mass, as shown in the figure. The resulting torsional pendulum undergoes small oscillations. The torsional constant of the wire is $1.2 \times 10^{-8} \mathrm{~N} \mathrm{~m} \mathrm{rad}^{-1}$. The angular frequency of the oscillations in $n \times 10^{-3} \mathrm{rad} \mathrm{s}^{-1}$. The value of $n$ is $\qquad$ .


## SECTION 4 (Maximum Marks: 12)

- This section contains FOUR (04) Matching List Sets.
- Each set has ONE Multiple Choice Question.
- Each set has TWO lists: List-I and List-II.
- List-I has Four entries (P), (Q), (R) and (S) and List-II has Five entries (1), (2), (3), (4) and (5).
- FOUR options are given in each Multiple Choice Question based on List-I and List-II and ONLY ONE of these four options satisfies the condition asked in the Multiple Choice Question.
- Answer to each question will be evaluated according to the following marking scheme:

Full Marks $\quad:+3$ ONLY if the option corresponding to the correct combination is chosen;
Zero Marks : 0 If none of the options is chosen (i.e. the question is unanswered);
Negative Marks : -1 In all other cases.
Q. 14 List-I shows different radioactive decay processes and List-II provides possible emitted particles. Match each entry in List-I with an appropriate entry from List-II, and choose the correct option.

## List-I

(P) ${ }_{92}^{238} U \rightarrow{ }_{91}^{234} \mathrm{~Pa}$
(Q) ${ }_{82}^{214} \mathrm{~Pb} \rightarrow{ }_{82}^{210} \mathrm{~Pb}$
(R) ${ }_{81}^{210} \mathrm{Tl} \rightarrow{ }_{82}^{206} \mathrm{~Pb}$
(S) ${ }_{91}^{228} \mathrm{~Pa} \rightarrow{ }_{88}^{224} R a$

## List-II

(1) one $\alpha$ particle and one $\beta^{+}$particle
(2) three $\beta$ particles and one $\alpha$ particle
(3) two $\beta^{-}$particles and one $\alpha$ particle
(4) one $\alpha$ particle and one $\beta^{-}$particle
(5) one $\alpha$ particle and two $\beta^{+}$particles
(A) $P \rightarrow 4, Q \rightarrow 3, R \rightarrow 2, S$
(B) $P \rightarrow 4, Q \rightarrow 1, R \rightarrow 2, S \rightarrow 5$
(C) $P \rightarrow 5, Q \rightarrow 3, R \rightarrow 1, ~ Q 4$
(D) $P \rightarrow 5, Q \rightarrow 1, R \rightarrow 3, S \rightarrow 2$
Q. 15 Match the tempe ture of a black body given in List-I with an appropriate statement in List-II, and choose the correct option.
[Given: Wien's constant as $2.9 \times 10^{-3} \mathrm{~m}-\mathrm{K}$ and $\frac{h c}{e}=1.24 \times 10^{-6} \mathrm{~V}-\mathrm{m}$ ]

## List-I

(P) 2000 K
(Q) 3000 K
(R) 5000 K
(S) 10000 K
(4)
(5) The radiation at peak emission wavelength can be used to image human bones.
(A) $P \rightarrow 3, Q \rightarrow 5, R \rightarrow 2, S \rightarrow 3$
(B) $P \rightarrow 3, Q \rightarrow 2, R \rightarrow 4, S \rightarrow 1$
(C) $P \rightarrow 3, Q \rightarrow 4, R \rightarrow 2, S \rightarrow 1$
(D) $P \rightarrow 1, Q \rightarrow 2, R \rightarrow 5, S \rightarrow 3$
Q. 16 A series LCR circuit is connected to a $45 \sin (\omega t)$ Volt source. The resonant angular frequency of the circuit is $10^{5} \mathrm{rad} \mathrm{s}^{-1}$ and current amplitude at resonance is $I_{0}$. When the angular frequency of the source is $\omega=8 \times 10^{4} \mathrm{rad} \mathrm{s}^{-1}$, the current amplitude in the circuit is $0.05 I_{0}$. If $L=50 \mathrm{mH}$, match each entry in List-I with an appropriate value from List-II and choose the correct option.

## List-I

(P) $I_{0}$ in mA
(Q) The quality factor of the circuit
(R) The bandwidth of the circuit in rad s ${ }^{-1}$
(S) The peak power dissipated at resonance in Watt

## List-II

(1) 44.4
(2) 18
(3) 400
(4) 2250
(5) 500
(A) $P \rightarrow 2, Q \rightarrow 3, R \rightarrow 5, S \rightarrow 1$
(B) $P \rightarrow 3, Q \rightarrow 1, R \rightarrow 4, S \rightarrow 2$
(C) $P \rightarrow 4, Q \rightarrow 5, R \rightarrow 3, S \rightarrow 1$
(D) $P \rightarrow 4, Q \rightarrow 2, R \rightarrow 1, S \rightarrow 5$
Q. 17 A thin conducting rod MN of mass 20 gm , length 25 cm and resistance $10 \Omega$ is held on frictionless, long, perfectly conducting vertical rails as shown in the figure. There is a uniform magnetic field $B_{0}=4 \mathrm{~T}$ directed perpendicular to the plane of the rod-rail arrangement. The rod is released from rest at time $t=0$ and it moves down along the rails. Assume air drag is negligible. Match each quantity in List-I with an appropriate value from List-II, and choose the correct option.
[Given: The acceleration due to gravity $g=10 \mathrm{~m} \mathrm{~s}^{-2}$ and $e^{-1}=0.4$ ]


## List-II

## List-I

(P) At $t=0.2 \mathrm{~s}$, the magnitude of the induced emf in Volt
(1) 0.07
(Q) At $t=0.2 \mathrm{~s}$, the magnitude of the magnetic force in Newton
(2) 0.14
(R) At $t=0.2 \mathrm{~s}$, the power dissipated as heat in Watt
(3) 1.20
(S) The magnitude of terminal velocity of the rod in $\mathrm{m} \mathrm{s}^{-1}$
(4) 0.12
(5) 2.00
(A) $P \rightarrow 5, Q \rightarrow 2, R \rightarrow 3, S \rightarrow 1$
(B) $P \rightarrow 3, Q \rightarrow 1, R \rightarrow 4, S \rightarrow 5$
(C) $P \rightarrow 4, Q \rightarrow 3, R \rightarrow 1, S \rightarrow 2$
(D) $P \rightarrow 3, Q \rightarrow 4, R \rightarrow 2, S \rightarrow 5$

## Chemistry

## SECTION 1 (Maximum Marks: 12)

- This section contains THREE (03) questions.
- Each question has FOUR options (A), (B), (C) and (D). ONE OR MORE THAN ONE of these four option(s) is(are) correct answer(s).
- For each question, choose the option(s) corresponding to (all) the correct answer(s).
- Answer to each question will be evaluated according to the following marking scheme:

Full Marks : +4 ONLY if (all) the correct option(s) is(are) chosen;
Partial Marks : +3 If all the four options are correct but ONLY three options are chosen;
Partial Marks : +2 If three or more options are correct but ONLY two options are chosen, both of which are correct;
Partial Marks : +1 If two or more options are correct but ONLY one option is chosen and it is a correct option;
Zero Marks : 0 If none of the options is chosen (i.e. the question is unanswered);
Negative Marks: - 2 In all other cases.

- For example, in a question, if (A), (B) and (D) are the ONLY three options corresponding to correct answers, then
choosing $\operatorname{ONLY}(A),(B)$ and (D) will get +4 marks;
choosing ONLY (A) and (B) will get +2 marks;
choosing ONLY (A) and (D) will get +2 marks;
choosing ONLY (B) and (D) will get +2 marks;
choosing ONLY (A) will get +1 mark;
choosing ONLY (B) will get +1 mark;
choosing ONLY (D) will get +1 mark;
choosing no option (i.e. the question is unanswered) will get 0 marks; and
choosing any other combination of options will get -2 marks.
Q. 1 The correct statement( 8 related to processes involved in the extraction of metals is(are)
(A) Roasting of Malachite produces Cuprite.
(B) Calcination Of Calamine produces Zincite.
(C) Copper pyrites is heated with silica in a reverberatory furnace to remove iron.
(D) Impure silver is treated with aqueous KCN in the presence of oxygen followed by reduction with zinc metal.
Q. 2 In the following reactions, $\mathbf{P}, \mathbf{Q}, \mathbf{R}$, and $\mathbf{S}$ are the major products.



(i) PhMgBr , then $\mathrm{H}_{2} \mathrm{O}$
$\mathrm{PhCH}_{2} \mathrm{CHO}$
(ii) $\mathrm{CrO}_{3}$, dil. $\mathrm{H}_{2} \mathrm{SO}_{4}$
(iii) HCN
(iv) $\mathrm{H}_{2} \mathrm{SO}_{4}, \Delta$

The correct statement(s) about $\mathbf{P}, \mathbf{Q}, \mathbf{R}$, and $\mathbf{S}$ is(are)
(A) Both $\mathbf{P}$ and $\mathbf{Q}$ have asymmetric carbon(s).
(B) Both $\mathbf{Q}$ and $\mathbf{R}$ have asymmetric carbon(s).
(C) Both $\mathbf{P}$ and $\mathbf{R}$ have asymmetric carbon(s).
(D) $\mathbf{P}$ has asymmetric carbon(s), $\mathbf{S}$ does not have any asymmetric carbon.

## D ownload all N O T E S and PAPE R S at StudentSuvidha.com

Q. 3 Consider the following reaction scheme and choose the correct option(s) for the major products $\mathbf{Q}$, $\mathbf{R}$ and $\mathbf{S}$.




(A)

Q
R
s



(B) Q
R
S

(C)

Q



COOH



S

(D) Q


R


S

## D ownload all N O T E S and PAPE R S at StudentSuvidha.com

## SECTION 2 (Maximum Marks: 12)

- This section contains FOUR (04) questions.
- Each question has FOUR options (A), (B), (C) and (D). ONLY ONE of these four options is the correct answer.
- For each question, choose the option corresponding to the correct answer.
- Answer to each question will be evaluated according to the following marking scheme:

Full Marks : +3 If ONLY the correct option is chosen;
Zero Marks : 0 If none of the options is chosen (i.e. the question is unanswered);
Negative Marks : -1 In all other cases.
Q. 4 In the scheme given below, $\mathbf{X}$ and $\mathbf{Y}$, respectively, are

(A) $\mathrm{CrO}_{4}{ }^{2-}$ and $\mathrm{Br}_{2}$
(B) $\mathrm{MnO}_{4}{ }^{2-}$ and Cl
(C) $\mathrm{MnO}_{4}^{-}$and $\mathrm{O}_{12}$
(D) $\mathrm{MnSO}_{4}$ and HOCl
Q. $5 \quad$ Plotting $1 / \Lambda_{\mathrm{m}}$ against $\mathrm{c} \Lambda_{\mathrm{m}}$ for aqueous solutions of a monobasic weak acid (HX) resulted in a straight line with $y$-axis intercept of P and slope of S . The ratio $\mathrm{P} / \mathrm{S}$ is
[ $\Lambda_{\mathrm{m}}=$ molar conductivity
$\Lambda_{\mathrm{m}}^{\mathrm{o}}=$ limiting molar conductivity
$\mathrm{c}=$ molar concentration
$\mathrm{K}_{\mathrm{a}}=$ dissociation constant of HX]
(A) $\mathrm{K}_{\mathrm{a}} \Lambda_{\mathrm{m}}^{\mathrm{o}}$
(B) $\mathrm{K}_{\mathrm{a}} \Lambda_{\mathrm{m}}^{\mathrm{o}} / 2$
(C) $2 \mathrm{~K}_{\mathrm{a}} \Lambda_{\mathrm{m}}^{\mathrm{o}}$
(D) $1 /\left(\mathrm{K}_{\mathrm{a}} \Lambda_{\mathrm{m}}^{\mathrm{o}}\right)$
Q. 6 On decreasing the $p \mathrm{H}$ from 7 to 2 , the solubility of a sparingly soluble salt (MX) of a weak acid (HX) increased from $10^{-4} \mathrm{~mol} \mathrm{~L}^{-1}$ to $10^{-3} \mathrm{~mol} \mathrm{~L}^{-1}$. The $p \mathrm{~K}_{\mathrm{a}}$ of HX is
(A) 3
(B) 4
(C) 5
(D) 2
Q. 7 In the given reaction scheme, $\mathbf{P}$ is a phenyl alkyl ether, $\mathbf{Q}$ is an aromatic compound; $\mathbf{R}$ and $\mathbf{S}$ are the major products.
(i) NaOH
$\mathbf{P} \xrightarrow{\mathrm{HI}} \mathbf{Q}$
(ii) $\mathrm{CO}_{2}$
(iii) $\mathrm{H}_{3} \mathrm{O}^{+}$
$\mathbf{R} \xrightarrow[\text { (ii) } \mathrm{H}_{3} \mathrm{O}^{+}]{\text {(i) }\left(\mathrm{CH}_{3} \mathrm{CO}\right)_{2} \mathrm{O}} \mathbf{s}$

The correct statement about $\mathbf{S}$ is
(A) It primarily inhibits noradrenaline degrading enzymes.
(B) It inhibits the synthesis of prostaglandin.
(C) It is a narcotic drug.
(D) It is ortho-acetylbenzoic acid.

## D ownload all N O T E S and PAPE R S at StudentSuvidha.com

## SECTION 3 (Maximum Marks: 24)

- This section contains SIX (06) questions.
- The answer to each question is a NON-NEGATIVE INTEGER.
- For each question, enter the correct integer corresponding to the answer using the mouse and the onscreen virtual numeric keypad in the place designated to enter the answer.
- Answer to each question will be evaluated according to the following marking scheme:

Full Marks $\quad:+4$ If ONLY the correct integer is entered; Zero Marks : 0 In all other cases.
Q. 8 The stoichiometric reaction of 516 g of dimethyldichlorosilane with water results in a tetrameric cyclic product $\mathbf{X}$ in $75 \%$ yield. The weight (in g ) of $\mathbf{X}$ obtained is $\qquad$ —.
[Use, molar mass $\left(\mathrm{g} \mathrm{mol}^{-1}\right): \mathrm{H}=1, \mathrm{C}=12, \mathrm{O}=16, \mathrm{Si}=28, \mathrm{Cl}=35.5$ ]
Q. 9 A gas has a compressibility factor of 0.5 and a molar volume of $0.4 \mathrm{dm}^{3} \mathrm{~mol}^{-1}$ at a temperature of 800 K and pressure $\mathbf{x ~ a t m}$. If it shows ideal gas behaviour at the same temperature and pressure, the molar volume will be $\mathbf{y ~ d m}{ }^{3} \mathrm{~mol}^{-1}$. The value of $\mathbf{x} / \mathbf{y}$ is
[Use: Gas constant, $\mathrm{R}=8 \times 10^{-2} \mathrm{~L} \mathrm{~atm} \mathrm{~K}^{-1} \mathrm{~mol}^{-1}$ ]

## D ownload all N O T E S and PA PE R S at StudentSuvidha.com

Q. $10 \quad$ The plot of $\log k_{f}$ versus $1 / T$ for a reversible reaction $\mathrm{A}(\mathrm{g}) \rightleftharpoons \mathrm{P}(\mathrm{g})$ is shown.


Pre-exponential factors for the forward and backward reactions are $10^{15} \mathrm{~s}^{-1}$ and $10^{11} \mathrm{~s}^{-1}$, respectively. If the value of $\log K$ for the reaction at 500 K is 6 , the value of $\left|\log k_{b}\right|$ at 250 K is $\qquad$ —.
[ $K=$ equilibrium constant of the reaction
$k_{f}=$ rate constant of forward reaction
$k_{b}=$ rate constant of backward reaction]
Q. 11 One mole of an ideal monoatomic gas undergoes two reversible processes ( $\mathrm{A} \rightarrow \mathrm{B}$ and $\mathrm{B} \rightarrow \mathrm{C}$ ) as shown in the given figure:

$A \rightarrow B$ is an adiabatic process. If the total heat absorbed in the entire process ( $A \rightarrow B$ and $B \rightarrow C$ ) is $\mathrm{R} T_{2} \ln 10$, the value of $2 \log V_{3}$ is $\qquad$ .
[Use, molar heat capacity of the gas at constant pressure, $C_{\mathrm{p}, \mathrm{m}}=\frac{5}{2} \mathrm{R}$ ]

## D ownload all N O T E S and PAPE R S at StudentSuvidha.com

Q. 12 In a one-litre flask, 6 moles of $A$ undergoes the reaction $\mathrm{A}(\mathrm{g}) \rightleftharpoons \mathrm{P}(\mathrm{g})$. The progress of product formation at two temperatures (in Kelvin), $T_{1}$ and $T_{2}$, is shown in the figure:


If $T_{1}=2 T_{2}$ and $\left(\Delta G_{2}^{\Theta}-\Delta G_{1}^{\Theta}\right)=R T_{2} \ln x$, then the value of $x$ is $\qquad$ .
$\left[\Delta G_{1}^{\Theta}\right.$ and $\Delta G_{2}^{\Theta}$ are standard Gibb's free energy change for the reaction at temperatures $T_{1}$ and $T_{2}$, respectively.]
Q. 13 The total number of $s p^{2}$ hybridised carbon atoms in the major product $\mathbf{P}$ (a non-heterocyclic compound) of the following reaction is $\qquad$ .


## SECTION 4 (Maximum Marks: 12)

- This section contains FOUR (04) Matching List Sets.
- Each set has ONE Multiple Choice Question.
- Each set has TWO lists: List-I and List-II.
- List-I has Four entries (P), (Q), (R) and (S) and List-II has Five entries (1), (2), (3), (4) and (5).
- FOUR options are given in each Multiple Choice Question based on List-I and List-II and ONLY ONE of these four options satisfies the condition asked in the Multiple Choice Question.
- Answer to each question will be evaluated according to the following marking scheme:

Full Marks : +3 ONLY if the option corresponding to the correct combination is chosen;
Zero Marks : 0 If none of the options is chosen (i.e. the question is unanswered);
Negative Marks: -1 In all other cases.
Q. 14 Match the reactions (in the given stoichiometry of the reactants) in List-I with one of their products given in List-II and choose the correct option.

## List-I

(P) $\mathrm{P}_{2} \mathrm{O}_{3}+3 \mathrm{H}_{2} \mathrm{O} \rightarrow$
(Q) $\mathrm{P}_{4}+3 \mathrm{NaOH}+3 \mathrm{H}_{2} \mathrm{O}$
(R) $\mathrm{PCl}_{5}+\mathrm{CH}_{3} \mathrm{COOH}$
(S) $\mathrm{H}_{3} \mathrm{PO}_{2}+2 \mathrm{H}_{2} \mathrm{O}+44 \mathrm{mNO}_{3} \rightarrow$

## List-II

(1) $\mathrm{P}(\mathrm{O})\left(\mathrm{OCH}_{3}\right) \mathrm{Cl}_{2}$
(2) $\mathrm{H}_{3} \mathrm{PO}_{3}$
(3) $\mathrm{PH}_{3}$
(4) $\mathrm{POCl}_{3}$
(5) $\mathrm{H}_{3} \mathrm{PO}_{4}$
(A) $\mathrm{P} \rightarrow 2 ; \mathrm{Q}-0 ; \mathrm{R} \rightarrow 1 ; \mathrm{S} \rightarrow 5$
(B) $\mathrm{P} \rightarrow 3 ; \mathrm{Q} \rightarrow 5 ; \mathrm{R} \rightarrow 4 ; \mathrm{S} \rightarrow 2$
(C) $\mathrm{P} \rightarrow 5 ; \mathrm{Q} \rightarrow 2 ; \mathrm{R} \rightarrow 1 ; \mathrm{S} \rightarrow 3$
(D) $\mathrm{P} \rightarrow 2 ; \mathrm{Q} \rightarrow 3 ; \mathrm{R} \rightarrow 4 ; \mathrm{S} \rightarrow 5$

## D ownload all N O T E S and PAPERS at StudentSuvidha.com

Q. 15 Match the electronic configurations in List-I with appropriate metal complex ions in List-II and choose the correct option.
[Atomic Number: $\mathrm{Fe}=26, \mathrm{Mn}=25, \mathrm{Co}=27$ ]

## List-I

(P) $t_{2 g}^{6} e_{g}^{0}$
(Q) $t_{2 g}^{3} e_{g}^{2}$
(R) $e^{2} t_{2}^{3}$
(S) $t_{2 g}^{4} e_{g}^{2}$

## List-II

(1) $\left[\mathrm{Fe}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{2+}$
(2) $\left[\mathrm{Mn}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{2+}$
(3) $\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{6}\right]^{3+}$
(4) $\left[\mathrm{FeCl}_{4}\right]^{-}$
(5) $\left[\mathrm{CoCl}_{4}\right]^{2-}$
(A) $\mathrm{P} \rightarrow 1 ; \mathrm{Q} \rightarrow 4 ; \mathrm{R} \rightarrow 2 ; \mathrm{S} \rightarrow 3$
(B) $\mathrm{P} \rightarrow 1 ; \mathrm{Q} \rightarrow 2 ; \mathrm{R} \rightarrow 4 ; \mathrm{S} \rightarrow 5$
(C) $\mathrm{P} \rightarrow 3 ; \mathrm{Q} \rightarrow 2 ; \mathrm{R} \rightarrow 5 ; \mathrm{S} \rightarrow 1$
(D) $\mathrm{P} \rightarrow 3 ; \mathrm{Q} \rightarrow 2 ; \mathrm{R} \rightarrow 4 ; \mathrm{S} \rightarrow 1$
Q. 16 Match the reactions in List-I with the features of their products in List-II and choose the correct option.

## List-I

(P)

(Q)

(R)


(single enantiomer)

## List-II

(1) Inversion of configuration
(2) Retention of configuration
(3) Mixture of enantiomers
(4) Mixture of structural isomers
(5) Mixture of diastereomers
(A) $\mathrm{P} \rightarrow 1 ; \mathrm{Q} \rightarrow 2 ; \mathrm{R} \rightarrow 5 ; \mathrm{S} \rightarrow 3$
(B) $\mathrm{P} \rightarrow 2 ; \mathrm{Q} \rightarrow 1 ; \mathrm{R} \rightarrow 3 ; \mathrm{S} \rightarrow 5$
(C) $\mathrm{P} \rightarrow 1 ; \mathrm{Q} \rightarrow 2 ; \mathrm{R} \rightarrow 5 ; \mathrm{S} \rightarrow 4$
(D) $\mathrm{P} \rightarrow 2$; $\mathrm{Q} \rightarrow 4 ; \mathrm{R} \rightarrow 3 ; \mathrm{S} \rightarrow 5$
Q. 17 The major products obtained from the reactions in List-II are the reactants for the named reactions mentioned in List-I. Match List-I with List-II and choose the correct option.

## List-I

(P) Etard reaction
(Q) Gattermann reaction
(R) Gattermann-Koch reaction
(S) Rosenmund reduction

## List-II

(1) Acetophenone $\xrightarrow{\mathrm{Zn}-\mathrm{Hg}, \mathrm{HCl}}$
(2) Toluene $\xrightarrow[\text { (ii) } \mathrm{SOCl}_{2}]{\text { (i) } \mathrm{KMnO}_{4}, \mathrm{KOH}, \Delta}$
(3) Benzene $\xrightarrow[\text { anhyd. } \mathrm{AlCl}_{3}]{\mathrm{CH}_{3} \mathrm{Cl}}$
(4) Aniline $\xrightarrow[273-278 \mathrm{~K}]{\mathrm{NaNO}_{2} / \mathrm{HCl}}$
(5) Phenol $\xrightarrow{\mathrm{Zn}, \Delta}$
(A) $\mathrm{P} \rightarrow 2 ; \mathrm{Q} \rightarrow 4 ; \mathrm{R} \rightarrow 1 ; \mathrm{S} \rightarrow 3$
(B) $\mathrm{P} \rightarrow 1 ; \mathrm{Q} \rightarrow 3 ; \mathrm{R} \rightarrow 5 ; \mathrm{S} \rightarrow 2$
(C) $\mathrm{P} \rightarrow 3 ; \mathrm{Q} \rightarrow 2 ; \mathrm{R} \rightarrow 1 ; \mathrm{S} \rightarrow 4$
(D) $\mathrm{P} \rightarrow 3 ; \mathrm{Q} \rightarrow 4 ; \mathrm{R} \rightarrow 5 ; \mathrm{S} \rightarrow 2$

